DiffCSE: Difference between revisions
Jump to navigation
Jump to search
RobowaifuDev (talk | contribs) (Created page with "'''DiffCSE''' is a contrastive learning framework for learning sentence embeddings from unlabeled data.<ref>Chuang et al. "DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings." 2022. [https://arxiv.org/abs/2204.10298 arXiv:2204.10298]</ref> It uses a difference-based loss function to compare two sentence embeddings, one generated by masking out the sentence and filling it in with generated data with a masked language model, and training a model to prod...") |
RobowaifuDev (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
'''DiffCSE''' is a contrastive learning framework for learning sentence embeddings from unlabeled data.<ref>Chuang et al. "DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings." 2022. [https://arxiv.org/abs/2204.10298 arXiv:2204.10298]</ref> It uses a difference-based loss function to compare two sentence embeddings, one generated by masking out the sentence and filling it in with generated data with a masked language model, and training a model to produce representations that accurately capture the semantic similarity between sentences. This approach is demonstrated to be effective for a variety of downstream tasks, such as multi-document summarization, sentence similarity assessment, and text classification. | '''DiffCSE''' is a contrastive learning framework for learning sentence embeddings from unlabeled data.<ref>Chuang et al. "DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings." 2022. [https://arxiv.org/abs/2204.10298 arXiv:2204.10298]</ref> It uses a difference-based loss function to compare two sentence embeddings, one generated by masking out the sentence and filling it in with generated data with a masked language model, and training a model to produce representations that accurately capture the semantic similarity between sentences. This approach is demonstrated to be effective for a variety of downstream tasks, such as multi-document summarization, sentence similarity assessment, and text classification. | ||
=== References === |
Revision as of 03:26, 9 January 2023
DiffCSE is a contrastive learning framework for learning sentence embeddings from unlabeled data.[1] It uses a difference-based loss function to compare two sentence embeddings, one generated by masking out the sentence and filling it in with generated data with a masked language model, and training a model to produce representations that accurately capture the semantic similarity between sentences. This approach is demonstrated to be effective for a variety of downstream tasks, such as multi-document summarization, sentence similarity assessment, and text classification.
References
- ↑ Chuang et al. "DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings." 2022. arXiv:2204.10298