DiffCSE

From Robowaifu Institute of Technology
Revision as of 03:25, 9 January 2023 by RobowaifuDev (talk | contribs) (Created page with "'''DiffCSE''' is a contrastive learning framework for learning sentence embeddings from unlabeled data.<ref>Chuang et al. "DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings." 2022. [https://arxiv.org/abs/2204.10298 arXiv:2204.10298]</ref> It uses a difference-based loss function to compare two sentence embeddings, one generated by masking out the sentence and filling it in with generated data with a masked language model, and training a model to prod...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

DiffCSE is a contrastive learning framework for learning sentence embeddings from unlabeled data.[1] It uses a difference-based loss function to compare two sentence embeddings, one generated by masking out the sentence and filling it in with generated data with a masked language model, and training a model to produce representations that accurately capture the semantic similarity between sentences. This approach is demonstrated to be effective for a variety of downstream tasks, such as multi-document summarization, sentence similarity assessment, and text classification.

  1. Chuang et al. "DiffCSE: Difference-based Contrastive Learning for Sentence Embeddings." 2022. arXiv:2204.10298