Latest papers

From Robowaifu Institute of Technology
Revision as of 02:07, 12 August 2021 by RobowaifuDev (talk | contribs)
Jump to navigation Jump to search
This page requires expansion!
This page needs papers! Papers for creating robowaifus!

This page serves to collect notable research papers within the past two years related to robotics and artificial intelligence. Feel free to add new papers to the list and discuss any papers on the talk page.

Recent papers

PROTIP: You can use sshleifer/distilbart-cnn-12-6 and SciTLDR to help with summarizing papers. Check the paper template for usage instructions.

August 2021

Computer vision

NeuralMVS: Bridging Multi-View Stereo and Novel View Synthesis (arXiv:2108.03880)

tl;dr Multi-view stereo is a core task in 3D computer vision. NeRF methods do not generalize to novel scenes and are slow to train and test. We propose to bridge the gap between these two methodologies with a novel network that can recover 3D scene geometry as a distance function.[1]


Simulation

iGibson 2.0: Object-Centric Simulation for Robot Learning of Everyday Household Tasks (arXiv:2108.03272)

tl;dr iGibson 2.0 is a novel simulation environment using Bullet that supports the simulation of a more diverse set of household tasks through three key innovations. Firstly, it supports object states, including temperature, wetness level, cleanliness level, and toggled and sliced states, necessary to cover a wider range of tasks. Second, it implements a set of predicate logic functions that map the simulator states to logic states like Cooked or Soaked. Third, the simulator can sample valid physical states that satisfy a logic state. This functionality can generate potentially infinite instances of tasks with minimal effort from the users.[2]


July 2021

Audio processing

SoundStream: An End-to-End Neural Audio Codec (arXiv:2107.03312)

tl;dr A novel neural audio codec that can efficiently compress speech, music and general audio at bitrates normally targeted by speech-tailored codecs. SoundStream at 3kbps outperforms Opus at 12kbps and approaches EVS at 9.6kbps.[3]


June 2021

Multimodal learning

Multimodal Few-Shot Learning with Frozen Language Models (arXiv:2106.13884)

tl;dr When trained at sufficient scale, auto-regressive language models exhibit the notable ability to learn a new language task after being prompted with just a few examples. Here, the authors present a simple, yet effective, approach for transferring this few-shot learning ability to a multimodal setting (vision and language).[4]


Optimizers

A Generalizable Approach to Learning Optimizers (arXiv:2106.00958)

tl;dr Learning to update optimizer hyperparameters instead of model parameters directly using novel features, actions, and a reward function.[5]


May 2021

Memory

Not All Memories are Created Equal: Learning to Forget by Expiring (arXiv:2105.06548)

tl;dr The authors propose Expire-Span, a method that learns to retain the most important information and expire the irrelevant information, which enables Transformers to scale to attend over tens of thousands of previous timesteps efficiently.[6]


April 2021

Fine-tuning

The Power of Scale for Parameter-Efficient Prompt Tuning (arXiv:2104.08691)

tl;dr In this work, the author's explore "prompt tuning" a simple but effective mechanism for learning "soft prompts" to condition frozen language models to perform specific downstream tasks.[7]


October 2020

Computer vision

GRF: Learning a General Radiance Field for 3D Scene Representation and Rendering (arXiv:2010.04595)

tl;dr General Radiance Fields construct an internal representation for each 3D point of a scene from 2D inputs and renders the corresponding appearance and geometry of any 3D scene viewing from an arbitrary angle.[8]


September 2020

Summarization

Learning to Summarize with Human Feedback (arXiv:2009.01325)

tl;dr Human feedback models outperform much larger supervised models and reference summaries on TL;DR.[9]


Older papers

References

  1. Radu Alexandru Rosu, Sven Behnke. NeuralMVS: Bridging Multi-View Stereo and Novel View Synthesis. arXiv:2108.03880, 2021.
  2. Chengshu Li, Fei Xia, Roberto Martín-Martín, Michael Lingelbach, Sanjana Srivastava, Bokui Shen, Kent Vainio, Cem Gokmen, Gokul Dharan, Tanish Jain, Andrey Kurenkov, Karen Liu, Hyowon Gweon, Jiajun Wu, Li Fei-Fei, Silvio Savarese. iGibson 2.0: Object-Centric Simulation for Robot Learning of Everyday Household Tasks. arXiv:2108.03272, 2021.
  3. Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, Marco Tagliasacchi. SoundStream: An End-to-End Neural Audio Codec. arXiv:2107.03312, 2021.
  4. Maria Tsimpoukelli, Jacob Menick, Serkan Cabi, S. M. Ali Eslami, Oriol Vinyals, Felix Hill. Multimodal Few-Shot Learning with Frozen Language Models. arXiv:2106.13884, 2021.
  5. Diogo Almeida, Clemens Winter, Jie Tang, Wojciech Zaremba. A Generalizable Approach to Learning Optimizers. arXiv:2106.00958, 2021.
  6. Sainbayar Sukhbaatar, Da Ju, Spencer Poff, Stephen Roller, Arthur Szlam, Jason Weston, Angela Fan. Not All Memories are Created Equal: Learning to Forget by Expiring. arXiv:2105.06548, 2021.
  7. Brian Lester, Rami Al-Rfou, Noah Constant. The Power of Scale for Parameter-Efficient Prompt Tuning. arXiv:2104.08691, 2021.
  8. Alex Trevithick, Bo Yang. GRF: Learning a General Radiance Field for 3D Scene Representation and Rendering. arXiv:2010.04595, 2020.
  9. Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario Amodei, Paul Christiano. Learning to Summarize with Human Feedback. arXiv:2009.01325, 2020.